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Abstract

For a conic optimization problem

P : minimize^ c^x

s.t. Ax — b

xeC

and its dual:

D : supremum^ 3 b^y

s.t. A^y + s = c

seC\

we present a geometric relationship between the maximum norms of the

level sets of the primal and the inscribed sizes of the level sets of the

dual (or the other way around).
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1 Primal-Dual Geometry of Level Sets for Lin-

ear Optimization

Consider the following dual pair of linear optimization problems:

LP : minimize c^x

s.t. Ax — b

X > 0,

and:
LD : maximize b'^y

s.t. A'^y + s = c

s > ,

whose common optimal value is z* . For e > and <5 > 0, define the e- and

(5-level sets for the primal and dual problems as follows::

P, := [x
\
Ax = b,x>0, Jx < 2* + e}

and

Di := Is
I

A'^y + s = c, s > for some y satisfying b^y > z* — S\ .

Define:

i?e := max ||2:||i

s.t. Ax = b

Jx < z* + e

x >

and

rs := max minj{sj}

s.t. AJ'y + s = c

h^y >z* -6
s >

(2)

The quantity R^ is simply the size of the largest vector x in the primal

level set P^, measured in the Li-norm. The quantity rs can be interpreted

as the positivity of the most positive vector s in the dual level set Ds, or

equivalently as the maximum distance to the boundary of the nonnegative
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orthant over all points s in Ds. The following theorem presents a reciprocal

relationship between R^ and rf.

Theorem 1.1 Suppose that z* is finite. If R^ is positive and finite, then

min {e,6} < R^ rs < e + 6 .

Otherwise, R^ = if and only if r^ — +oo, and R^ = +oo if and only ifr^ — 0.

The proof of this theorem follows as a special case of a more general

result for convex conic optimization, namely Lemma 4.1 in Section 4.

Theorem 1.1 bounds the size of the largest vector in P^ and the pos-

itivit}' of the most positive vector in D^ from above and below, and shows

that these quantities are almost exactly inversely proportional. In fact, taking

6 = e, the result states that R^ r^ lies in the interval [e, 26].

Corollary 1.1 If R^ < oo, then

R, < f^1 R. (3)

for all e > f.
|

Proof: If i?e = the result follows trivially, since then R^' = for all e > 0.

So suppose that < i?^ < +oo. Let 6 := e. Then from Theorem 1.1 we have

e < ^. • r, < 2e and e < R^> r, < e + e, and so R^' < ('-^\ R,.
\

Corollary 1.1 bounds the rate of growth of i?^,' as e increases, and shows

that R^' grows at most linearly in e' and at a rate no greater than ^.

Of course, there is a version of (3) for rs and r^' , namely:

for all < (5 < (5, which is true as an elementary consequence of the convexity

of the feasible region of LD (independent of the results contained herein).

However, (3) does not seem to lend itself to an independent elementary proof.

By exchanging the roles of the primal and dual problems, we obviously

can construct analogous results for the most positive vector x in P^ as well as

for the size of the largest vector s in D^.
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2 Conic Optimization with a Norm on X

We now consider the generalization of linear optimization to convex optimiza-

tion in conic linear form:

P : z* := minimum^ c^x

s.t. Ax = b

X G C,

and its dual;

D : v' :— supremumy^^ b^y

s.t. A^y + s — c

SEC*,

where C C A' is a closed convex cone in the (finite) 7i-dimensional linear vector

space X, and b lies in the (finite) m-dimensional vector space Y. This format

for convex optimization dates back at least to Duffin [2]. Strong duality results

can be found in [2] as well as in Ben-Israel et al. [1].

For e > and 6 > 0, we define the e- and (5-level sets for the primal

and dual problems as follows:

P, := Ix
\
Ax = b,x e C, Jx < 2*

-I- e|

and

Ds — Is
I

A'^y + s — c,s € C* ior some y G 1'* satisfying b'^y > v* - 5\ .

We make the following assumption:

Assumption A: z* and v* are both finite. The cone C contains no line (and

so C* has an interior).

Suppose that X is endowed with a norm
||

•

||
and so A^* is endowed

with the dual norm
||

•

||,. Let B{v,r) and B*{w,r) denote the balls of radius

r centered at u G A and w G A*, respectively, defined for the appropriate

norms.

We denote the maximum norm of P^ by Re, defined as:

R, := max^ ||x|| , .

s.t. xeP,. ^^'

We denote by rs the inscribed size of D^, defined as:
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s.t. s e Ds (6)

B*{s,r) CC* .

As in tlie case of linear optimization, rs measures the distance of the most

interior point of the dual level set Ds to the boundary of the cone C*.

Before presenting the version of Theorem 1.1 for convex conic optimiza-

tion, we first review the concept of the min-width of a regular cone, see [3].

A cone A' is regular if K is a closed convex cone, has a nonempty interior,

and is pointed (i.e., contains no line). We use the following definition of the

min-width of K:

Definition 2.1 // A' is a regular cone in the normed linear vector space X,

the min-width of K is defined as:

tk ;= max < -— > — max < 7^

—

- B[x,r) C A
jeintK I X I

x€intA' I \\x\\

We remark that r^- measures the maximum ratio of the radius to the

norm of the center of an inscribed ball in A', and so larger values of r^- cor-

respond to an intuitive notion of greater minimum width of K. Note that

tk G (0, 1] if K is a regular cone, since K has a nonempty interior and K is

pointed, and r^^- is attained for some x^ G intA" satisfying \\x^\\ = 1, as well as

along the ray ax^ for all a > 0. Let r^-- be defined similarly for the dual cone

AT'.

The following is analogous to Theorem 1.1 for conic problems:

Theorem 2.1 Suppose that Assumption A holds. If R^ is positive and finite,

then z* = v' and

Tc- • min {e,6} < R^- r^ < e-\- 5 .

Otherwise, R^ — if and only ifrg = -|-oo, and R^ — -|-oo if and only ifrs — 0.

Here we have had to introduce the min-width tq- into the left inequality,

somewhat weakening the result. In the next section we show how to define a

family of cone-based norms for which tc = 1; we also show that for norms

induced by a i3-normal barrier function on C that re* > l/\fd. Theorem 2.1

is proved in Section 4.
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Corollary
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||s||, := miiio Q

s.t. s + as° e C*

-s + as° € C
whose dual norm is easilv seen to be:

\\x\\ := min^i.i.2 {s){x+x)

x^eC .

Under
|| ||,, it is easily shown that \\s°\\t = 1 and tq- — 1.

In the case when A' = 5R", = 0* = 5R" , and s° = e, we recover the

Loo-norm as ||s||» for s £ X = K" and the Li-norm as ||x|| for x £ X — K".

4 A Technical Lemma, and Proofs of Main Re-

sults

The technical result that is the basis for the other results in this paper is as

follows. Let s" 6 intC* be given. Let

R, := max^ (s°)'^x , ,

s.t. X e P, ^
'

and

rs := maxj^r ^

s.t. s e Ds (8)

s-rs° eC* .

Lemma 4.1 Suppose that Asssumption A holds. If R^ is positive and finite,

then z' — v' and

min {e,6} < R,-fs < e + 6 . (9)

Otfierwise, R^ — if and only if f^ = +00, and R^ = +00 if and only if f^ = 0.
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Before proving Lemma 4.1, we first prove strong duality for P and D
when Rf < +00.

Proposition 4.1 If R^ < +00, then z* = v*

.

Proof: Note that if ^^ < 00 for some e > 0, then all of the level sets P^ of

P are bounded, and so P attains its minimum. The boundedness of P^ also

implies that

{0} = [v € .Y
I

Av = 0, i; e C, Jv < 0} . (10)

It is elementary to show that z' > v*. Suppose that z* > v* , let e = ^
""'

,

and let

S = {(1^,0)13^ 6 Y* , s £ C* satisfying w = A^y + s — c, b^y > v* + e — a}.

Then 5 is a nonempty convex set in A'* x 5R, and (0, 0) ^ S, whereby there

exists (x, 9) ^ satisfying x'^w + 9a > for all {w, a) G 5. Therefore:

x'^ (A^y + s-c)+9 (-b^y + u* + e + /;) > Vy € Y\\/s G C*, V?/ > .

(11)

This implies that Ax = b9, 6 > 0, and x E C. We now have two cases:

Case 1: ^ > 0. Without loss of generality we can assume that 9 — 1.

Therefore x is feasible for P, and (11) also implies that z* < c^x < v* -\-e < z*,

which is a contradiction.

Case 2: 9 = 0. In this case x ^ 0, x e C, Ax = 0, and (11) implies that

c^x < 0, contradicting (10).

In both cases we have a contradiction, and so z* = v* .

|

Proof of Lemma 4.1: Let us first examine the extreme cases fs = +00 and

fs = 0. If fj = +00, then it is a straightforward exercise in convex analysis to

show under Assumption A that z* = v* = 0,b = 0, the feasible region of P is

the singleton {0}, and there exists [y, s) satisfying A'^y+s = 0, s G intC*. This

then implies that R^ = 0. If fs = 0, then it is also a straightforward exercise in

convex analysis to show under Assumption A that there exists i 7^ satisfying

Ax = 0, X G C, c^x < 0. This then implies that R^^ = +00.

We now consider the case when < fs < +00. For any a G (0,f^),

there exists s £ Ds satisfying v := s — as° G C* . For every x G P^ we have

e + 6>s'^x = {v + as°fx > ais'^fx,
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wherebv ^t < — , and so R,f^ < e + 5. This proves the second inequality of

(9).

To prove the first inequality of (9), we proceed as follows. We write (7)

as the following program together with its dual:

P : R, := maxj {s°fx D : v := infy,,,^ -b'^y + {z* + e)e

s.t. Ax = b s.t. A'^y + s = 9c

Jx <z* + t s-s° eC*
X ec e>o.

In Lemma 4.2 below, we show strong duality for P and D, namely

R^ = V, under Assumption A and in the case when R,, < +oo.

Because the feasible region of P is bounded, P will attain its optimum.

For a 6 (0,min{e, J}) and sufficiently small, let {y,s,6) be a feasible solution

of D satisfying

-6^y + (z* + e)9 <R, + a (12)

and define y := s - s" G C*. We will show below that

ReVs > ^^ (min{e, 5 - a}) (13)

and letting a ^ establishes the first inequality of (9). We prove (13) by

considering three cases.

Case 1: ^ = 0. In this case A'^y + s — and -b'^y < R^ + a. Let (y, s) be

any feasible solution of D satisfying b'^y > z* - a, and define

(y,s) ={y,s)+ - iy,s).
Re + a

Then (y, s) is feasible for D, and

b'^y = b^y + -^ b'^y >z*-a-5 + a = z*-5.
Rf + a

Also, s - 4^s° = Pt-v + seC*, whereby s G Ds and fs > 4^. This th

implies (13).

Case 2: > and ^^ -€<5. Define

en
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wlierebv (y, s) satisfies s £ C, A'^y + s = c, and

,T- 1,T ^ Rt+Oi
h' y=-/y> ^ + ^- + e > .-* - <5,

wliich sliows that s £ D^- Furthermore, s = ^ + ^, v G C*, and so s-^s'^ G C*

whence r^ > i. However,

I

() I
'-' ^ ^ I

""'-' ^'J '^ '

, r . Re + ce

and so ^ > yf^, whereby r^ > ^ > -j^^, which then implies (13).

Case 3: > and ^^^ - e > 5. Let (y, s) be any feasible solution of D
satisfying

and define

where

b'y>z'-a (14)

(y,5) = A(%^)+(l-A)(y,s-)

6 — a

^^-€-a

Then A 6 [0, 1] for a e (0, ^), and so (y, s) is a convex combination of ^^ and

(y, s) and so satisfies .4-^y + s = c, s e C* . It also follows from (12) and (14)

that b'^y > z' - 5, whereby s G D^. Finally, s - |s° G C*, and so

A 5 — a 5 — a
^5 > 7T = T^ 7,

-. >
9 R, + a - a9 - ee - Re + a

from which (13) follows.

Therefore (13) is true, and letting a —)• proves the first inequality of (9). |

Lemma 4.2 Suppose that Assumption A holds. If R^ is positive and finite,

then R^ = V.

Proof: Note that for x and {y,s,9) feasible for P and D, respectively,

< x^(s - s°) = 9c'^x - y'^Ax - {sYx < 9{z* + e) - y^6 - [s^x,
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and so {s°)'^x < -y^h + {z* + e)0. Tlierefore R^ < v. Suppose that 7?^ < v,

let f = ^^ and let

5 =
{ («', q)

I

3y e Y% seX*,e>0 satisfying

w = -ec + A^y + s, -b'^y + [z* + e)e <v - e + a,s - s° e C*}.

Then 5 is a nonempty convex set in ,Y* x 5R, and (0,0) ^ 5, whereby there

exists {x,^) ^ satisfying x'^w + /3a > for all [w, a) £ 5. Therefore

x'^ [-Be + A'^y + s° + u) + ^ [-b^y + [z* + e)9 - v + e + r]) >

Vy e y\ vu G c*, ye > 0, v?? > o

.

(i5)

This implies that x G C, .4x - 6/? = 0, and /3 > 0. We now have two cases:

Case 1: (3 > 0. Without loss of generality we can assume that /3 = 1.

Therefore x is feasible for P and (15) also implies that {s°)'^x > v - e > R^,

which is a contradiction.

Case 2: j5 = Q. In this case (15) implies that Ax = 0, x G C, c^x < 0, and

also X / 0, which contradicts (10).

In both cases we obtain a contradiction, and so R^ = v.
|

Proof of Theorem 1.1: Follows from Lemma 4.1 by setting C = 5R" and
sO = e:=(l,...,l)^.,

Before proving Theorem 2.1, we state the following two propositions.

The proof of the Proposition 4.2 follows immediately from Proposition 3 of [4]

and Proposition 2.1 of [3]. Proposition 4.3 is a special case of the Hahn-Banach

Theorem; for a short proof of this proposition based on the subdifferential

operator, see Proposition 2 of [4].

Proposition 4.2 Suppose K* is a regular convex cone whose min-width r^--

IS attained at some point s° € intK* satisfying ||5°||, = 1. Then

TK-M <{SYX <\\X\

for all X G A'
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Proposition 4.3 For every x € X , there exists x E X* with the property that

||x||, = 1 and ||.r|| — x^x.
|

Proof of Theorem 2.1: Let s° G C* be a point in C* at which the min-width

of C* is attained, normalized so that ||s°||t = 1- Then B*{s'^,tc-) C C* and

also Tc- ||x|| < (s°)-^x < ||x|| for all j G C (from Proposition 4.2). From (7) and

(5) it follows that tc-R^ < R^ < Rt- Also, since the constraint s - rs° G C*

implies that B*{s,rTc-) C C* and the constraint B*{s,r) C C implies that

s - rs'^ € C, it follows from (8) and (6) that Tcfg < rs < f^. Therefore

i?f = if and only if .R^ = if and only if fs — +oo if and only if rs — +oo,

and i?f = +00 if and only if R^ — +oo if and only if f^ = if and only if

rs — 0, from Lemma 4.1.

If i?t is positive and finite, it follows then that R^ rs > tc- Re fs ^
Tc- m'in{e,5}, from Lemma 4.1, which proves one of the inequalities of the

theorem. Also, this shows that rs > 0. For any x G P^, there exists x E X* for

which ||x||, = 1 and x'^x = \\x\\, see Proposition 4.3. And for any a G {0,rs),

there exists {y,s) feasible for D such that s E Ds and B*{s,a) C C*. Then
e + 6 > c^x — b^y = s^x = {s — ax + ax)'^x > ax^x — a||a;||, where the second

inequality follows from the fact that (s - ax) G C* since B*{s,a) C C*.

Therefore ||x|| < ^ for any a G {0,rs) and x G P^, whereby Rs rs < e + S,

completing the proof
|
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